منابع مشابه
CS294 Final Project: An Application of Non-parametric Regression
The dominant theme of cs294 is learning patterns or relations from data. These may be simple binary relations suitable for classification algorithms, or more complicated relationships, such as functional dependences. This report concerns the later. For my final project I have examined several regression algorithms (including k-nearest neighbor, support vector machine, and Gaussian random proces...
متن کاملOnline Non-Parametric Regression
We establish optimal rates for online regression for arbitrary classes of regression functions in terms of thesequential entropy introduced in [14]. The optimal rates are shown to exhibit a phase transition analogous to thei.i.d./statistical learning case, studied in [16]. In the frequently encountered situation when sequential entropyand i.i.d. empirical entropy match, our resu...
متن کاملNon-parametric Regression Between Manifolds
This paper discusses non-parametric regression between Riemannian manifolds. This learning problem arises frequently in many application areas ranging from signal processing, computer vision, over robotics to computer graphics. We present a new algorithmic scheme for the solution of this general learning problem based on regularized empirical risk minimization. The regularization functional tak...
متن کاملConfidence Regions, Regularization and Non-Parametric Regression
In this paper we offer a unified approach to the problem of nonparametric regression on the unit interval. It is based on a universal, honest and non-asymptotic confidence region An which is defined by a set of linear inequalities involving the values of the functions at the design points. Interest will typically centre on certain simplest functions in An where simplicity can be defined in term...
متن کاملNon-parametric Cointegrating Regression with Nnh Errors
This paper studies a non-linear cointegrating regression model with nonlinear nonstationary heteroskedastic error processes. We establish uniform consistency for the conventional kernel estimate of the unknown regression function and develop a two-stage approach for the estimation of the heterogeneity generating function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANNALS OF THE ORADEA UNIVERSITY. Fascicle of Management and Technological Engineering.
سال: 2013
ISSN: 1583-0691
DOI: 10.15660/auofmte.2013-1.2802